приложение № II.2. к основной образовательной основного общего образования

ОТКНИЧП

на заседании педагогического совета протокол №1 от 30.08.2021

«УТВЕРЖДАЮ» директор МОБУ

«Средняя общеобразовательная школа №8 г. Волхова» приказ №360-ОД от 02.09.2021г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО ПРЕДМЕТА «Физика» 7-9 класс

г. Волхов Ленинградская область

Раздел 1. Планируемые результаты освоения учебного предмета «Физика	5
Раздел 2 Содержание учебного предмета «Физика»	.10
Раздел 3. Тематическое планирование курса «Физика» 7-9 класс1	16

1. Планируемые результаты освоения учебного предмета физики.

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация' образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами обучения физике в основной школе являются:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии

- с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Общими предметными результатами обучения физике в основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания им объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Предметные результаты

Механические явления

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы

Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

- распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;

- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
- различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их

- обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы электрического сопротивления при последовательном параллельном И соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.
- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл

используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.
- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

По окончании изучения курса выпускник научится:

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
- понимать различия между гелиоцентрической и геоцентрической системами мира.

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;
- различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;
- различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета Физика 7 класс

I. Введение (5 ч)

Предмет и методы физики. Экспериментальный метод изучения природы. Измерение физических величин.

Погрешность измерения. Обобщение результатов эксперимента.

Наблюдение простейших явлений и процессов природы с помощью органов чувств (зрения, слуха, осязания). Использование простейших измерительных приборов. Схематическое изображение опытов. Методы получения знаний в физике. Физика и техника.

Фронтальная лабораторная работа.

1.Определение цены деления измерительного прибора.

II. Первоначальные сведения о строении вещества. (5 часов.)

Гипотеза о дискретном строении вещества. Молекулы. Непрерывность и хаотичность движения частиц вещества.

Диффузия. Броуновское движение. Модели газа, жидкости и твердого тела.

Взаимодействие частиц вещества. Взаимное притяжение и отталкивание молекул.

Три состояния вещества.

Фронтальная лабораторная работа.

2. Измерение размеров малых тел.

III. Взаимодействие тел. (21 час.)

Механическое движение. Равномерное и неравномерное движение. Скорость.

Расчет пути и времени движения. Траектория. Прямолинейное движение.

Взаимодействие тел. Инерция. Масса. Плотность

Измерение массы тела на весах. Расчет массы и объема тела по его плотности.

Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Динамометр. Сложение двух сил, направленных по одной прямой. Трение.

Упругая деформация.

Фронтальные лабораторные работы.

- 3. Измерение массы тела на рычажных весах.
- 4. Измерение объема тела.
- 5. Измерение плотности твердого вещества.
- 6. Градуирование пружины и измерение сил динамометром.

IV. Давление твердых тел, жидкостей и газов. (25 часов)

Давление. Опыт Торричелли.

Барометр-анероид.

Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления.

Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры.

Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами.

Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда.

Сообщающие сосуды. Архимедова сила. Гидравлический пресс.

Плавание тел. Плавание судов. Воздухоплавание.

Фронтальные лабораторные работы.

7. Измерение выталкивающей силы, действующей на погруженное в жидкость тело.

8. Выяснение условий плавания тела в жидкости.

V. Работа и мощность. Энергия. (12 часов.)

Работа. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов.

Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе.

Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Фронтальные лабораторные работы.

9. Выяснение условия равновесия рычага.

10. Измерение КПД при подъеме по наклонной плоскости.

Физика 8 класс

I. Тепловые явления (25 часов)

Внутренняя энергия. Тепловое движение. Температура. Теплопередача. Необратимость процесса теплопередачи.

Связь температуры вещества с хаотическим движением его частиц. Способы изменения внутренней энергии.

Теплопроводность.

Количество теплоты. Удельная теплоемкость.

Конвекция.

Излучение. Закон сохранения энергии в тепловых процессах.

Плавление и кристаллизация. Удельная теплота плавления. График плавления и отвердевания.

Преобразование энергии при изменениях агрегатного состояния вещества.

Испарение и конденсация. Удельная теплота парообразования и конденсации.

Работа пара и газа при расширении.

Кипение жидкости. Влажность воздуха.

Тепловые двигатели.

Энергия топлива. Удельная теплота сгорания.

Агрегатные состояния. Преобразование энергии в тепловых двигателях.

КПД теплового двигателя.

Фронтальные лабораторные работы.

- 1. Сравнение количеств теплоты при смешивании воды разной температуры.
- 2. Измерение относительной влажности воздуха с помощью термометра.
- 3. Измерение удельной теплоемкости твердого тела.

П. Электрические явления. (27 часов)

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Дискретность электрического заряда. Электрон.

Закон сохранения электрического заряда. Электрическое поле. Электроскоп. Строение атомов.

Объяснение электрических явлений.

Проводники и непроводники электричества.

Действие электрического поля на электрические заряды.

Постоянный электрический ток. Источники электрического тока.

Носители свободных электрических зарядов в металлах, жидкостях и газах.

Электрическая цепь и ее составные части. Сила тока. Единицы силы тока.

Амперметр. Измерение силы тока.

Напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения.

Сопротивление. Единицы сопротивления.

Закон Ома для участка электрической цепи.

Расчет сопротивления проводников. Удельное сопротивление.

Примеры на расчет сопротивления проводников, силы тока и напряжения.

Реостаты.

Последовательное и параллельное соединение проводников. Действия электрического тока

Закон Джоуля-Ленца. Работа электрического тока.

Мощность электрического тока.

Единицы работы электрического тока, применяемые на практике.

Счетчик электрической энергии. Электронагревательные приборы.

Расчет электроэнергии, потребляемой бытовыми приборами.

Нагревание проводников электрическим током.

Количество теплоты, выделяемое проводником с током.

Лампа накаливания. Короткое замыкание.

Предохранители.

Фронтальные лабораторные работы.

1. Сборка электрической цепи и измерение силы тока в ее различных участках.

- 2. Измерение напряжения на различных участках электрической цепи.
- 3. Регулирование силы тока реостатом.
- 4. Измерение сопротивления проводника с помощью амперметра и вольтметра.
- 5. Измерение работы и мощности электрического тока.
- 6.Измерение КПД установки с электрическим нагревателем.

III. Световые явления. (12 часов)

Источники света.

Видимое движение светил.

Прямолинейное распространение, отражение и преломление света. Луч. Закон отражения света.

Плоское зеркало.

Линза. Оптическая сила линзы. Изображение, даваемое линзой.

Измерение фокусного расстояния собирающей линзы.

Оптические приборы.

Глаз и зрение. Очки.

Фронтальные лабораторные работы.

- 1. Изучение законов отражения света.
- 2. Наблюдение явления преломления света.
- 3.Получение изображения с помощью линзы.

IV. Электромагнитные явления (6 часов)

Магнитное поле. Магнитное поле прямого тока. Магнитные линии.

Магнитное поле катушки с током. Электромагниты. Применение электромагнитов.

Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле земли.

Действие магнитного поля на проводник с током. Электрический двигатель.

Фронтальные лабораторные работы.

- 1. Сборка электромагнита и испытание его действия.
- 2. Изучение электрического двигателя постоянного тока (на модели).

Физика 9 класс

Законы взаимодействия и движения тел (34 ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Законы

Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальные лабораторные работы.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук (15 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. Интерференция звука.

Фронтальные лабораторные работы.

3. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от его длины.

Электромагнитное поле (25 ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразование энергии В электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Интерференция света. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы Швета тел. Спектрограф и спектроскоп. оптических Спектральный анализ. Поглощение и испускание света атомами.

Фронтальные лабораторные работы.

- 4. Изучение явления электромагнитной индукции.
- 5. Наблюдение сплошного линейчатых спектров испускания.

Строение атома и атомного ядра. Использование энергии атомных ядер (20

ч)

Радиоактивность как свидетельство сложного строения атомов. α-, β- и γ-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы исследования частиц. Протонно – нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения для α- и β-распада при ядерных реакциях. Энергия связи частиц в ядре. Деление ядра урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция.

Фронтальные лабораторные работы.

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8. Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.
- 9. Изучение треков заряженных частиц по готовым фотографиям.

Строение и эволюция Вселенной (5 ч)

Источники энергии Солнца и звезд. Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Повторение курса физики основной школы (6 ч)

3. Тематическое планирование физики 7-9 класс

	Тема (раздел)/класс	7 класс	8 класс	9 класс	всего по факту
1	Физика и физические методы изучения природы	4	-	-	4
2	Механические явления	58		34	92
3	Тепловые явления	6	25	-	31
4	Электрические и магнитные явления	-	33	25	58
5	Световые явления	-	12	-	12
6	Механические колебания и волны	-	-	15	15
7	Квантовые явления	-	-	20	20
8	Элементы астрономии	-	-	5	5
9	Лабораторные работы	11	10	9	30
10	Контрольные работы	4	5	5	14
11	Итоговое повторение	2	2	6	18
12	Резерв	0	0	0	0
13	Bcero	68/70	68/70	102/105	240/245

На изучение физики отводится 245 часов для обязательного изучения физики на ступени основного общего образования, в том числе:

- в VII классе 70 учебных часов из расчета 2 учебных часа в неделю.
- в VIII классе 70 учебных часов из расчета 2 учебных часа в неделю.
- в IX классе 105 учебных часов из расчета 3 учебных часа в неделю.